Study of meson spectroscopy of a lattice SU(4) gauge BSM model. **Venkitesh Ayyar** 1 Thomas Degrand 1 Daniel Hackett 1 William Jay 1 Ethan Neil 1,3 Benjamin Svetitsky 2 Yigal Shamir 2 . ¹University of Colorado, Boulder, ²Tel Aviv University, ³RIKEN-BNL Research Center. #### TaCo collaboration Tue, Aug 1, DPF 2017, Fermilab, Batavia, IL, USA. Work supported by grants from the DOE. Computational work done using resources provided by Fermilab and local Janus cluster. ## Hierarchy problem #### Unaesthetic features of SM - Higgs potential introduced for SSB. - Higgs is light ($\sim 100 \text{GeV}$) compared to Λ_{Planck} . - Higgs is a scalar. #### Higgs mass Hierarchy problem - Higgs mass $\sim \Lambda_{FW}$. - Any coupling to the Higgs introduces corrections $O(\Lambda_{IIV}^2)$ to Higgs mass, due to radiative corrections. - At higher scales, parameters have to be fine-tuned to get observed Higgs mass. Is Higgs a composite pNGB in a new strong sector? ## Composite Higgs ² - Introduce a new strong sector (Hypercolor). - Induce chiral symmetry breaking to get pNGBs one of which is the Higgs. - Symmetry breaking $G \to H$, with Higgs doublet in the G/H coset. - Weak sector $SU(2)_L \times U(1)_Y \subset H$. - Higgs potential generated dynamically by coupling to SM fields. #### Partial compositeness ¹ • Linear couplings of top quark to a baryon in the new sector gives fermion mass. Ferretti-Karateev in 2014 classified UV completions. ²Dugan, Georgi, Kaplan, Nucl. Phys. B254, 299 (1985) University of Colorad Boulder ¹Kaplan, Nuclear Physics B365, (1991) ## Ferretti's model(1404.7137) - UV completion with partial compositness. - SU(4) gauge theory with 2 representations. #### Fermion content - 5 sextet(A_2) Majorana fermions. - 6 fundamental(F) Weyl fermions. #### Symmetry breaking - SU(5)/SO(5) in A_2 rep. - $(SU(3)_L \times SU(3)_R) / SU(3)$ in F rep. The Higgs doublet lives in the SU(5)/SO(5) coset. #### Our Lattice model #### SU(4) gauge theory with modified fermion content - 2 flavors of sextet A_2 Dirac fermions. - 2 flavors of fundamental F Dirac fermions. #### Symmetry breaking - SU(4)/SO(4) in A_2 rep. - $(SU(2)_L \times SU(2)_R) / SU(2)$ in F rep. - 3 coupling constants : β , κ_4 , κ_6 . - Expected to capture qualitative features of Ferretti's model. #### Lattice details - Simulations on lattice sizes $16^3 \times 32$ and $16^3 \times 18$. - About 40 ensembles. - Multi-rep MILC code by Yigal Shamir - Studied Pseudo-scalar and vector mesons. - Extract meson masses using two-point correlation functions. - Using Wilson flow method to set the scale. #### Ensemble overview - Lattice results obtained in terms of lattice spacing a. - Using Wilson flow scale t₀ to remove a dependence. - Look at M_P/M_V vs m_q . - Quark mass m_q obtained using Axial Ward identity. - Relatively heavy mesons. - Similar behavior for both representations. ## Leading order ChiPt - Upto leading order in ChiPt, $M_{pi}^2 \sim m_q$. - Removed lattice artifacts obtained using Wilson ChiPt. - Linear behavior for both reps. ### Comparison with NLO ChiPT - Useful to compare lattice results to NLO ChiPT. - Multirep NLO ChiPT worked out by DeGrand, Goltermann, Neil, Shamir (1605.07738). - M_{P4} , F_{P4} , M_{P6} , F_{P6} depend on a set of low energy constants(LECs). - Simultaneous fit to all four quantities. - Find a good fit $(\chi^2/DOF \sim 0.5)$ #### Condensates - Two condensates, one for each representation. - Compute it indirectly using $\hat{\Sigma_r} = \frac{M_{P,r}^2 F_{P,r}^2}{2m_0}$ - Chiral limit values computed using ChiPt. - Condensate ratio Σ_6/Σ_4 - ▶ Lattice calc \rightarrow 2.2 ## Decay constants - KSRF 3,4 related F_V and F_P using current algebra and vector meson dominance. $F_V = \sqrt{2}F_P$. - Can compare F_V and F_P in a fixed representation. - QCD experiment: $F_V/F_P =$ 216 MeV / 130 MeV = 1.66. - For both reps, our results similar to QCD. V. Ayyar (CU, Boulder) ³Kawarabayashi and Suzuki, PRL 16, 255 (1966). ## Decay widths - KSRF also predicted coupling strength $g_{VPP} = \frac{M_V}{E_D}$. - Allows tree-level estimation of vector decay width: $\Gamma_V = g_{VPP}^2 M_V / 48\pi$. - KSRF prediction $\frac{\Gamma_V}{M_V} \sim \frac{M_V^2}{48\pi F^2}$. - $\bullet \ \frac{\Gamma_V}{M_V}_{QCD} = 0.19.$ - Our states narrower than QCD. - $\bullet \ \frac{\Gamma_{V6}}{M_{V6}} = 0.13$, $\frac{\Gamma_{V4}}{M_{V4}} = 0.18.$ #### Conclusions and Outlook #### Conclusions - Zero temperature study of lattice SU(4) gauge theory BSM model with fermions in multiple reps. - Meson spectroscopy data consistent with ChiPT. - KSRF relations hold similar to QCD. - Theory appears QCD-like. #### Future direction - Baryon spectroscopy. - Coupling between the two irreps. - LECs unconstrained. - Greater precision might help constrain these. - Existence of exotic pNGB ζ meson. - ▶ Theory has non-anomalous $U(1)_A$ - ightharpoonup SSB \Longrightarrow scalar, singlet ζ meson. ## THANK YOU ## Back-up slides #### Wilson flow to set the scale - Wilson flow: a smearing technique to smooth-out configurations. - Also, a method to set the scale⁵, - $t_0\langle E(t_0)\rangle=M(N)$, where $E(t)=\frac{1}{4}G_{t,\mu\nu}G_{t,\mu\nu}$. - For QCD (N=3), M = 0.3, corresponding to $\sqrt(t_0) = 0.14 fm$. - For SU(4), $t_0\langle E(t_0)\rangle = 0.3 \times \frac{4}{3} = 0.4$,